Genetic mapping of Bt-toxin binding proteins in a Cry1A-toxin resistant strain of diamondback moth Plutella xylostella.

نویسندگان

  • Simon W Baxter
  • Jian-Zhou Zhao
  • Anthony M Shelton
  • Heiko Vogel
  • David G Heckel
چکیده

A major mechanism of resistance to Bacillus thuringiensis (Bt) toxins in Lepidoptera is a reduction of toxin binding to sites in the midgut membrane. Genetic studies of three different species have shown that mutations in a candidate Bt receptor, a 12-cadherin-domain protein, confer Cry1A toxin resistance. Despite a similar resistance profile in a fourth lepidopteran species, Plutella xylostella, we have previously shown that the cadherin orthologue maps to a different linkage group (LG8) than Cry1Ac resistance (LG22). Here we tested the hypothesis that mutations in other genes encoding candidate Bt-binding targets could be responsible for Bt resistance, by mapping eight aminopeptidases, an alkaline phosphatase (ALP), an intestinal mucin, and a P252 glycoprotein with respect to the 29 AFLP marked linkage groups in a P. xylostella cross segregating for Cry1Ac resistance. A homologue of the Caenorhabditis elegans Bt resistance gene bre-2 was also mapped. None of the genes analysed were on the same chromosome containing the Cry1Ac resistance locus, eliminating them as candidate resistance genes in the parental resistant strain SC1. Although this finding excludes cis-acting mutations in these genes as causing resistance in this strain, one or more of the expressed proteins may still bind Cry1Ac toxin, and post-translational modifications could affect this binding and thereby exert a trans-acting effect on resistance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different cross-resistance patterns in the diamondback moth (Lepidoptera: Plutellidae) resistant to Bacillus thuringiensis toxin Cry1C.

Two strains of the diamondback moth, Plutella xylostella (L.), were selected using Cry1C protoxin and transgenic broccoli plants expressing a Cry1C toxin of Bacillus thuringiensis (Bt). Both strains were resistant to Cry1C but had different cross-resistance patterns. We used 12 Bt protoxins for cross-resistance tests, including Cry1Aa, Cry1Ab, Cry1Ac, Cry1Bb, Cry1C, Cry1D, Cry1E, Cry1F, Cry1J, ...

متن کامل

Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella.

Insecticidal toxins from Bacillus thuringiensis (Bt) are widely used to control pest insects, but evolution of resistance threatens their continued efficacy. The most common type of Bt resistance ('Mode 1') is characterized by recessive inheritance, > 500-fold resistance to at least one Cry1A toxin, negligible cross-resistance to Cry1C, and reduced binding of Bt toxins to midgut membrane target...

متن کامل

Cross-resistance and stability of resistance to Bacillus thuringiensis toxin Cry1C in diamondback moth.

We tested toxins of Bacillus thuringiensis against larvae from susceptible, Cry1C-resistant, and Cry1A-resistant strains of diamondback moth (Plutella xylostella). The Cry1C-resistant strain, which was derived from a field population that had evolved resistance to B. thuringiensis subsp. kurstaki and B. thuringiensis subsp. aizawai, was selected repeatedly with Cry1C in the laboratory. The Cry1...

متن کامل

Cyt1A from Bacillus thuringiensis lacks toxicity to susceptible and resistant larvae of diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella).

We tested Cyt1Aa, a cytolytic endotoxin of Bacillus thuringiensis, against susceptible and Cry1A-resistant larvae of two lepidopteran pests, diamondback moth (Plutella xylostella) and pink bollworm (Pectinophora gossypiella). Unlike previous results obtained with mosquito and beetle larvae, Cyt1Aa alone or in combination with Cry toxins was not highly toxic to the lepidopteran larvae that we ex...

متن کامل

cDNAs of aminopeptidase-like protein genes from Plodia interpunctella strains with different susceptibilities to Bacillus thuringiensis toxins.

Aminopeptidase N has been reported to be a Bacillus thuringiensis (Bt) Cry1A toxin-binding protein in several lepidopteran insects. cDNAs of aminopeptidase-like proteins from both Bt-susceptible RC688s and Bt-resistant HD198r strains of the Indianmeal moth, Plodia interpunctella, were cloned and sequenced. They contain 3345 and 3358 nucleotides, respectively, and each has a 3048 bp open reading...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Insect biochemistry and molecular biology

دوره 38 2  شماره 

صفحات  -

تاریخ انتشار 2008